Lower Bound on the Blow-up Rate of the Axisymmetric Navier–Stokes Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower Bound on the Blow-up Rate of the Axisymmetric Navier–Stokes Equations

Chiun-Chuan Chen1, Robert M. Strain2, Horng-Tzer Yau2, and Tai-Peng Tsai3 1Department of Mathematics and Taida Institute of Mathematical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106 and National Center for Theoretical Sciences, Taiwan, Taipei Office. 2Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA, and 3Depar...

متن کامل

Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II

Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II Chiun-Chuan Chen a; Robert M. Strain b; Tai-Peng Tsai c; Horng-Tzer Yau b a Department of Mathematics and Taida Institute for Mathematical Sciences, National Taiwan University and National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan b Department of Mathematics, Harvard University, Cambridge, Massa...

متن کامل

Blow up Dynamic and Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation

We consider the critical nonlinear Schrödinger equation iut = −∆u − |u| 4 N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local existence in time of solutions on an interval [0, T ) is known, and there exists finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞. This is the smallest power in the nonlinearity for which blow up occurs, and is critical...

متن کامل

On the blow-up problem for the axisymmetric 3D Euler equations

In this paper we study the finite time blow-up problem for the axisymmetric 3D incompressible Euler equations with swirl. The evolution equations for the deformation tensor and the vorticity are reduced considerably in this case. Under the assumption of local minima for the pressure on the axis of symmetry with respect to the radial variations we show that the solution blows-up in finite time. ...

متن کامل

A study on the global regularity for a model of the 3D axisymmetric NavierStokes equations

We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2008

ISSN: 1687-0247,1073-7928

DOI: 10.1093/imrn/rnn016