Lower Bound on the Blow-up Rate of the Axisymmetric Navier–Stokes Equations
نویسندگان
چکیده
منابع مشابه
Lower Bound on the Blow-up Rate of the Axisymmetric Navier–Stokes Equations
Chiun-Chuan Chen1, Robert M. Strain2, Horng-Tzer Yau2, and Tai-Peng Tsai3 1Department of Mathematics and Taida Institute of Mathematical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan 106 and National Center for Theoretical Sciences, Taiwan, Taipei Office. 2Department of Mathematics, Harvard University, One Oxford Street, Cambridge, MA 02138, USA, and 3Depar...
متن کاملLower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II
Lower Bounds on the Blow-Up Rate of the Axisymmetric Navier-Stokes Equations II Chiun-Chuan Chen a; Robert M. Strain b; Tai-Peng Tsai c; Horng-Tzer Yau b a Department of Mathematics and Taida Institute for Mathematical Sciences, National Taiwan University and National Center for Theoretical Sciences, Taipei Office, Taipei, Taiwan b Department of Mathematics, Harvard University, Cambridge, Massa...
متن کاملBlow up Dynamic and Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation
We consider the critical nonlinear Schrödinger equation iut = −∆u − |u| 4 N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local existence in time of solutions on an interval [0, T ) is known, and there exists finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞. This is the smallest power in the nonlinearity for which blow up occurs, and is critical...
متن کاملOn the blow-up problem for the axisymmetric 3D Euler equations
In this paper we study the finite time blow-up problem for the axisymmetric 3D incompressible Euler equations with swirl. The evolution equations for the deformation tensor and the vorticity are reduced considerably in this case. Under the assumption of local minima for the pressure on the axis of symmetry with respect to the radial variations we show that the solution blows-up in finite time. ...
متن کاملA study on the global regularity for a model of the 3D axisymmetric NavierStokes equations
We investigates the global regularity issue concerning a model equation proposed by Hou and Lei [3] to understand the stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier-Stokes and Euler equations. Two major results are obtained. The first one establishes the global regularity of a generalized version of their model with a fractional Laplacian when the fractional power sati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2008
ISSN: 1687-0247,1073-7928
DOI: 10.1093/imrn/rnn016